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Abstract

This work is part of an e�ort aimed at developing computer-based systems for language instruction; we address the

task of grading the pronunciation quality of the speech of a student of a foreign language. The automatic grading

system uses SRI's DecipherTM continuous speech recognition system to generate phonetic segmentations. Based on

these segmentations and probabilistic models we produce di�erent pronunciation scores for individual or groups of

sentences that can be used as predictors of the pronunciation quality. Di�erent types of these machine scores can be

combined to obtain a better prediction of the overall pronunciation quality. In this paper we review some of the best-

performing machine scores and discuss the application of several methods based on linear and nonlinear mapping and

combination of individual machine scores to predict the pronunciation quality grade that a human expert would have

given. We evaluate these methods in a database that consists of pronunciation-quality-graded speech from American

students speaking French. With predictors based on spectral match and on durational characteristics, we ®nd that the

combination of scores improved the prediction of the human grades and that nonlinear mapping and combination

methods performed better than linear ones. Characteristics of the di�erent nonlinear methods studied are dis-

cussed. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of this work is to develop methods for
automatic assessment of pronunciation quality, to
be used as part of a computer-aided language in-
struction system (Neumeyer et al., 1996; Rypa,
1996). Typical foreign language instruction courses
focus mainly on reading, writing and listening
comprehension, much less e�ort is devoted to
teaching correct pronunciation. One of the reasons

possibly being that it requires more expensive re-
sources, such as extensive practice with private tu-
tors who are natives of the target language. An
interactive system capable of grading the pronun-
ciation quality could facilitate the pronunciation
learning process by giving feedback on the students
ability and progress to produce the foreign language
sounds. A prototype application (Neumeyer et al.,
1998) allows students to listen to natives saying
phrases, or selected parts of phrases and record
themselves to obtain pronunciations scores. Seg-
ments that are di�cult to produce can be practiced
by selecting the target words and obtaining scores

www.elsevier.nl/locate/specom
Speech Communication 30 (2000) 121±130

* Corresponding author.

0167-6393/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 6 3 9 3 ( 9 9 ) 0 0 0 4 5 - X



for them. The content can be easily updated to
provide new lessons with minimum e�ort.

The basic pronunciation scoring paradigm
(Bernstein et al., 1990; Bernstein, 1992; Digalakis,
1992) uses hidden Markov models (HMMs)
(Digalakis and Murveit, 1994) to generate pho-
netic segmentations of the student's speech. From
these segmentations, we use the HMMs to obtain
spectral match and duration scores. The e�ective-
ness of the di�erent machine scores is evaluated
based on their correlation with human grades on a
large database. Previous approaches were based
on statistical models built for speci®c sentences
(Digalakis, 1992). The current algorithms were
designed to produce pronunciation scores for ar-
bitrary sentences, in other words, sentences for
which there is no acoustic training data (Neumeyer
et al., 1996). This approach allows great ¯exibility
in the design of language instruction systems be-
cause new pronunciation exercises can be added
without retraining the scoring system.

In this work we focus on the problem of the
mapping and combination of di�erent machine
scores to obtain a better prediction of the human
grades. We experimented with linear and nonlinear
regression based on neural networks and regression
trees as well as with an estimation-based approach
to predict human grades from machine scores.

2. The database

The requirements of data needed for develop-
ment of the scoring system are more demanding
than those typical of speech recognition systems.
Here we describe part of the data collected under
the voice interactive language training system
(VILTS) project (Neumeyer et al., 1996). One
database of transcribed native speech is used for
training models for speech recognition and pro-
nunciation scoring. A second database of nonna-
tive read speech is transcribed and graded for
pronunciation quality at di�erent levels of detail
by expert human raters; it is used to develop and
calibrate the pronunciation scoring algorithms.

The native speech database consisted of 16,000
sentences recorded from 100 native speakers of
Parisian French. The recordings consisted of dif-

ferent read newspaper sentences, with no common
sentences across speakers to maximize the cover-
age of di�erent words and contexts. The average
length of a sentence was 19 words.

The nonnative corpus used for this study con-
sisted of 5089 di�erent sentences read from news-
papers by 100 American students speaking in
French. The average length of the nonnative sen-
tences was 14 words. We divided the 5089 sen-
tences into two equally sized sets, with no common
speakers, that were used alternatively as develop-
ment and evaluation sets. All the speech was re-
corded in quiet o�ces by a high-quality Sennheiser
microphone. The overall pronunciation of each of
the 5089 nonnative sentences was rated on a scale
of 1±5 by human experts. There was some overlap
in the speech material rated by the teachers for
consistency checking.

3. Pronunciation scoring

3.1. Human scoring

The human grades are the reference against
which the performance of the automatic scoring
systems should be tested and calibrated; as such, it
is important to assess the consistency of these
grades both between raters (inter-rater correla-
tions) and within each rater (intra-rater correla-
tions) when multiple ratings for the same sentence
are given. Two types of correlation were comput-
ed. At the sentence level, pairs of corresponding
ratings for any pair of raters for all the individual
sentences were correlated. At the speaker level,
®rst, the grades for all the sentences from each
speaker were averaged and then the sequence of
pairs of corresponding average grades for each of
the speakers was correlated.

In a preliminary study, ®ve French teachers,
certi®ed language testers, were selected from a
group of 10 candidates as the ®ve most self-con-
sistent raters. This panel of ®ve teachers rated the
overall pronunciation quality of each of the 5089
nonnative sentences on a scale of 1±5, ranging
from the categories `strongly nonnative' to `almost
native'. The probability distribution of grades
obtained is shown in Table 1 (Neumeyer et al.,
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1996), where we appreciate that the distribution
peaks around grades 2 and 3. The consistency
across raters was assessed in a subset of 342 non-
native sentences that were rated by all ®ve raters.
The average sentence/speaker-level inter-rater cor-
relation was r � 0:65=0:8; the average correlation
between a rater and the average of a pool of the
other raters was r � 0:76=0:87. The consistency
within raters was assessed in di�erent subsets of
approximately 130 sentences per rater that were
rated twice by each rater. The average intra-corre-
lation at the sentence level was r � 0:77. These
values may be considered upper bounds on the ex-
pected performance for the machine scoring system.
The values of the correlation coe�cients computed
in this work are dependent on the probability dis-
tribution of grades given above; as such, the corre-
lation values should be used as relative measures.

3.2. Automatic scoring

The di�erent pronunciation scoring algorithms
studied are all based on phonetic time alignments
generated using SRI's DecipherTM HMM-based
speech recognition system (Digalakis and Murveit,
1994); these HMMs have been trained using the
database of native speakers. The front-end extracts
mel-frequency cepstral coe�cients (MFCC); the
MFCC have the mean over each sentence removed
for acoustic channel normalization purposes. Both
context-independent and triphone (context-de-
pendent) models were trained. For recognition and
forced alignments we used the context-dependent
models, while the context-independent models
were used for one of the scoring measures. The
recognition system used Gaussian mixture models
for computation of the observation probabilities.
One hundred mixture components were used in
each Gaussian mixture. Also, the Gaussians com-
ponents were shared across all the triphone models
corresponding to a given center phone, as well as
its corresponding context-independent model. This
type of acoustic model is usually referred to as

`phonetically tied mixtures'. The context-indepen-
dent phone classes corresponded to the standard
set of phonemes in French with one borrowed
consonant added (/ng/).

To generate the alignments for the student's
speech we must know the text read by the student.
We do this by eliciting speech in a constrained way
in the language learning activities and then back-
tracking the time-aligned phone sequence by using
the Viterbi algorithm. From these alignments and
statistical models obtained from the native speech,
probabilistic scores are derived for the student's
speech. The statistical models used to do the scoring
are all based on phone units and, as such, no sta-
tistics of speci®c sentences or words are used.
Consequently, the algorithms are text independent.
Here, we review some of the scoring algorithms
introduced in (Neumeyer et al., 1996; Franco et al.,
1997).

3.2.1. HMM-based phone log-posterior probability
scores

We use a set of context-independent models
along with the HMM phone alignment to compute
an average posterior probability for each phone.
First, for each frame belonging to a segment cor-
responding to the phone qi we compute the frame-
based posterior probability P �qijyt�, of the phone i
given the observation vector yt:

P�qijyt� � p�ytjqi�P �qi�PM
j�1 p�ytjqj�P�qj�

; �1�

where P �qijyt� is the probability density of the
current observation using the model correspond-
ing to the qi phone. The sum over j runs over the
set of all context-independent phone models. P �qi�
represents the prior probability of the phone qi.

The average of the logarithm of the frame-
based phone posterior probability over all the
frames of the segment is de®ned as the posterior
score q̂i for the ith phone segment:

q̂i �
1

di

Xti�diÿ1

t�ti

logP �qijyt�: �2�

The posterior-based score for a whole sentence q is
de®ned as the average of the individual posterior
scores over the N phone segments in a sentence:

Table 1

Distribution of human grades over the nonnative database

Scores 1 2 3 4 5

% 9 31 42 15 3

H. Franco et al. / Speech Communication 30 (2000) 121±130 123



q � 1

N

XN

i�1

q̂i: �3�

The log-posterior score is robust against changes
in the spectral match that are due to particular
speaker characteristics or to acoustic channel
variations. This is a desirable property of pro-
nunciation-evaluation scores and can be attributed
to the fact that the same changes in acoustic match
a�ect both numerator and denominator similarly
in Eq. (1), making the score fairly invariant to
those changes and focused on the phonetic quality.

3.2.2. Segment duration scores
The procedure to compute the phone-based

duration score is as follows: ®rst, from the Viterbi
alignment we measure the duration in frames for
the ith segment; then its value is normalized to
compensate for rate of speech. To obtain the
corresponding phone segment duration score, the
log-probability of the normalized duration is
computed using a discrete distribution of dura-
tions for the corresponding context-independent
phone. The discrete duration distributions have
been previously trained from alignments generated
for the native training data. Again, the corre-
sponding sentence duration score is de®ned as the
average of the phone segment scores over the
sentence. Based on previous research (Neumeyer
et al., 1996), duration measurements were nor-
malized by rate of speech (ROS) prior to the
computation of the duration score. Therefore, the
duration score is de®ned as

D � 1

N

XN

i�1

log �p�f �di�jqi��; �4�

where di is the duration of the ith segment corre-
sponding to phone qi and f �di� � di �ROS is the
duration normalization function. The ROS was
estimated for each individual sentence as the aver-
age number of phones per unit of time. Segments
labeled as silence as well as phones in context with
silence were excluded from the ROS computation
based on previous research (Neumeyer et al., 1996).

3.2.3. Timing scores
Given that language learners tend to impose the

rhythm of their native language on the language

they are learning, some measure of timing could
represent the degree of ¯uency of a student and be
used as a predictor of pronunciation quality. For
example, English is stress-timed (stressed syllables
tend to be lengthened and others shortened), while
Spanish and French are syllable-timed. To attempt
to exploit this aspect of linguistic timing, a distri-
bution of normalized syllabic periods is estimated
from natives and used to evaluate timing scores for
nonnative speakers. The syllabic period is de®ned as
the time interval between the centers of vowels
within segments of speech. The normalization is
based, as before, on sentence ROS. The procedure to
obtain the timing distribution is similar to that used
for the duration scores, a single discrete distribution
is trained based on ROS-normalized syllabic peri-
ods in the force-aligned native database. Similar to
the duration score, the timing score is computed by
taking the average of the log-likelihoods of the
normalized syllabic periods over a given sentence.

3.3. Combination of scores

The grade that an ideal, experienced human
rater would assign to an utterance when rating
either the general pronunciation quality or a par-
ticular skill can be treated as a random variable.
The pronunciation evaluation problem can then be
de®ned as an estimation problem, where we try to
estimate, or predict, the value of the ideal human
grade h by using a set of predictors. These pre-
dictors are the machine scores that we have pre-
sented in our previous work (Neumeyer et al.,
1996, 1998; Rypa, 1996; Bernstein et al., 1990;
Bernstein, 1992; Digalakis, 1992; Digalakis and
Murveit, 1994), some of which were summarized in
the previous section. We investigated the use of
linear and nonlinear regression methods to predict
one random variable, the human grade, from a set
of others, the machine scores.

Applying a well-known result from probability
theory (Kay, 1993), when using a minimum mean
square error criterion (Eq. (5)) between the actual
human grades h and the predicted ones
~h � d�m1;m2; . . . ;mn�;

min
d

E�hÿ d�m1;m2; . . . ;mn��2; �5�
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the optimal predictor of the human grade ~hopt is
the conditional expected value of the actual human
grade h given the measured machine scores
m1;m2; . . . ;mn, that is,

~hopt � E�hjm1;m2; . . . ;mn�: �6�

3.3.1. Linear regression
If the machine and human scores can be mod-

eled as jointly Gaussian random variables or there
is a linear relationship among them, then the
conditional expected value of the human grade is a
linear combination of two or more machine scores
for each sentence plus a bias term. Thus, the pre-
dicted human grade ~h is

~h � a1m1 � a2m2 � � � � � anmn � b: �7�
The linear coe�cients a1; . . . ; an; b are optimized
(Draper and Smith, 1981) to minimize the mean
square error between the predicted and the actual
human grades over the sentences in a development
set. Linear regression is a parametric approach; as
such, the number of parameters that have to be
estimated is reasonably small, which leads to
simple and robust estimates.

3.3.2. Nonlinear regression
In the general case, this estimator is a nonlinear

function of the machine scores. If we do not know
the mathematical form of the underlying joint
probability distribution of the human and machine
scores, it is necessary to resort to nonparametric
methods. The potential advantage of the nonlinear
nonparametric methods is that they could attain a
better approximation to Eq. (6) than the linear
estimate of Eq. (7), by not having to assume a
particular form for the distributions and by being
able to model nonlinear maps between machine
scores and human grades as well as nonlinear re-
lationships between the machine scores. In the next
sections we describe our investigations of three
di�erent nonparametric nonlinear methods to pre-
dict the human grades: neural networks, probability
distribution estimation, and regression trees.

3.3.2.1. Neural networks. A neural network can be
considered as a very ¯exible function approxima-
tor capable of implementing arbitrary maps be-
tween input and output spaces (Cybenko, 1989).

Its parameters, the weights, are adjusted by the
training algorithm to minimize the training crite-
rion. With this approach, the machine scores to be
combined are the input to a neural network that
computes the mapping between the multiple ma-
chine scores m1;m2; . . . ;mn and the corresponding
predicted human grade ~h, that is,

~h � o�m1;m2; . . . ;mn�; �8�

where o� � represents the nonlinear mapping im-
plemented by the network. The actual human
grades provide the targets ± or desired output
values ± for the training of the network.

If the neural network is trained using the min-
imum mean square error criterion (5), if it has
enough number of weights and layers and if the
training does not get stuck in a local minimum, the
output of the neural network o�m1;m2; . . . ;mn� will
closely approximate Eq. (6), that is, the condi-
tional expected value of the desired output given
the inputs (Bourlard and Wellekens, 1990; Richard
and Lippman, 1991):

o�m1;m2; . . . ;mn� � E�hjm1;m2; . . . ;mn�: �9�

Training algorithms for neural networks, such
as backpropagation (Rumelhart and Mc Clelland,
1986), only assure the attainment of a local mini-
mum of the criterion. In addition, to obtain good
performance, in practice, we have to use a large
number of parameters for the network and there-
fore we need to use a regularization method to
avoid over®tting to the training data. Typically,
early stopping based on performance on a cross-
validation set is used. In this way, not even a local
minimum of the training criterion could be at-
tained. Nevertheless, cross-validation-based train-
ing allows us to robustly train large networks,
which in turn results in a good approximation to
the optimal solution of Eq. (6).

After some preliminary experimentation with
di�erent network architectures, we chose an archi-
tecture consisting of a two-layer perceptron with a
single linear output unit and a hidden layer of
sigmoidal units. We varied the number of hidden
units from 8 to 32; the best performance was ob-
tained with 16 hidden units. The number of input
units corresponded to the number of machine scores
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combined. The network was trained with back-
propagation using the mean square error criterion.
A momentum term was used in the weight update
rule (Rumelhart and Mc Clelland, 1986). To avoid
over®tting to the training data and to obtain good
generalization, we used a cross-validation set
formed with 15% of the training data. Prediction
performance was assessed after each training iter-
ation on this set; the training was stopped when
performance, measured by the same error criterion,
did not improve on the cross-validation set.

3.3.2.2. Probability distribution estimation. In this
approach we approximate the conditional expec-
tation (Eq. (6)) by direct computation of the ex-
pected value by using estimates of the necessary
conditional probabilities. The predicted human
grade ~h is computed as

~h � E�hjm1;m2; . . . ;mn�

�
XG

i�1

hi � P �hijm1;m2; . . . ;mn�; �10�

where P �hijm1;m2; . . . ;mn� is the estimated condi-
tional probability of the human grade hi given the
machine scores and G is the number of distinct
grades. Taking advantage of the fact that the hu-
man grades are discrete variables (in this case in
the range from 1 to 5), by using Bayes rule we can
express this probability as

P �hijm1;m2; . . . ;mn�� P�m1;m2; . . . ;mnjh�P �hi�PG
j�1 P �m1;m2; . . . ;mnjhj�P �hj�

;

�11�
where P �hi� is the estimated prior probability of
the human grade hi and P �m1;m2; . . . ;mnjhi� is the
estimate of the conditional distribution of the
machine scores for a given human grade hi.

In this work we modeled P �m1;m2; . . . ;mnjhi� by
discrete distributions that were estimated based on
the quantization of the machine scores.We studied
both scalar and vector quantization (VQ) cases. In
the scalar case, we linearly quantized each machine
score and estimated the joint discrete distribution
of the combination of quantized machine scores.
In the VQ case, the joint distribution of machine

scores was modeled by a single discrete distribu-
tion on the VQ index V �m1; . . . ;mn�:
P�m1;m2; . . . ;mnjh� � P�V �m1;m2; . . . ;mn�jhi�: �12�
In the design of the scalar quantizer we experi-
mented with a di�erent number of bins for each
machine score. We searched for the maximum
correlation in the range from 5 to 20 bins when
combining scores and in the range from 5 to 100
bins when mapping posterior scores only. We
found that when there are too few bins or too
many bins, the correlation is low. We obtained the
best result with 10 bins when combining three
scores, 12 bins when combining two scores and 50
bins when using a single machine score. Bin
probabilities were estimated by frequency counts
on the training data and smoothed by ¯ooring
their values. We designed the vector quantizer
(VQ) with K codewords for the machine score
combination, using the Euclidean distance as the
distortion measure; the individual machine scores
had been previously scaled to zero mean and unit
variance over the whole database. We initialized
the VQ by choosing K random data points from
the training set, and then we performed 15 itera-
tions of the LBG algorithm. For the VQ case, we
estimated the discrete distribution of the machine
score combination for each human grade by using
smoothed relative frequency. We tested codebooks
from K� 10 to K� 100 codewords. The best re-
sults were K� 20 codewords for posteriors, K� 15
codewords for posterior and duration and K� 50
codewords for posterior, duration and timing.

The vector quantization approach, which is more
e�cient in the use of parameters, resulted in more
accurate and robust estimates of the distributions,
as was re¯ected in the experimental results.

3.3.2.3. Regression trees. In the previous section we
estimated the conditional posterior distribution of
the human grade, given the machine scores, by using
Bayes rule and the class distributions of the quan-
tized machine scores. An alternative approach is to
estimate the conditional posterior distribution di-
rectly, using classi®cation and regression trees
(Breiman et al., 1984). A tree can be used to classify
a vector of machine scores �m1;m2; . . . ;mn� to one of
several possible classes ft1; t2; . . . ; tNg, each class
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representing a ®nal node (a leaf) of the tree. The
conditional distribution of the human grade, given
a set of machine scores, is then approximated by

p�hjm1;m2; . . . ;mn� � p�hjt�; �13�
where t is the leaf corresponding to the machine
scores m1;m2; . . . ;mn.

Speci®cally, starting at the root of the tree, a
question is asked at each node, resulting in a
choice of one of two branches leaving that node;
the process is repeated until a leaf node is reached.
Each leaf represents a subset of the training data
with similar or homogeneous properties and an
estimate of the conditional distribution (13) can be
obtained using these data. The estimate of the
human grade assigned to that leaf is the mean of
that conditional distribution, obtained by com-
bining Eqs. (10) and (13):

~h�t� � E�hjt� �
XG

i�1

hi � p�hijt�: �14�

When an input machine score vector ends up in a
leaf, the predicted human grade is the one assigned
to that leaf. With trees, the machine score's input
space is partitioned by the sequence of binary
splits into regions assigned to leaf nodes. In each
leaf node t, the predicted response value (the pre-
dicted human grade) ~h�t� is constant; therefore, the
tree can be considered as a histogram-like estimate
of the regression surface.

By using the supervised training data composed
of machine scores � �m; h� and the corresponding
human grades (where �m represents the vector of
machine scores m1;m2; . . . ;mn), we can build the
tree and obtain the rule that assigns the predicted
human grade to each leaf with the aid of available
tree construction algorithms (Breiman et al.,
1984). The mean of the conditional distribution
computed in Eq. (14) can also be computed as the
sample mean of the human grades h corresponding
to all N�t� cases that fall into node t:

~h�t� � 1

N�t�
X
�m2t

hn: �15�

This predictor minimizes the mean square error
over the training samples for a given tree structure.

It is important then, to grow a tree structure in a
way that would achieve the minimum of the global
mean square error computed over all the data,
which in turn would approximate the optimal es-
timator (Eq. (6)). The procedure is to generate, at
each node, the split that maximizes the decrease of
the accumulated square error for the samples at
the node being split.

In practice, we took a rather heuristic approach
to growing the tree, as it was important to have both
small size and good prediction. We used a public
domain software package (Buntine and Caruana,
1992) to test di�erent splitting criteria and pruning
levels. The predicted scores were then correlated
with the human grades. We chose the criterion that
allowed us to obtain the best correlation between
the predicted and the actual human grades in a
development set. The heuristic splitting rule based
on information gain (Buntine and Caruana, 1992;
Quinlan, 1986) produced slightly better results. For
each di�erent number of input features, the depth of
the trees was optimized by exhaustive search in the
range from 3 to 10 levels; then, di�erent degrees of
pruning were explored. For each case, we chose the
tree with the highest correlation between the pre-
dicted grades and the human grades; we picked the
smallest trees in cases of equal performance. For the
case that combines three machine scores, the best
tree had a depth of 5 levels. A depth of 4 levels was
optimal for the combination of two scores and for
the scalar case. Best results were obtained with mild
pruning which removed option branches whose
proportion was less than 0.01.

3.4. Experimental results

We evaluated each individual machine score in
terms of its level of correlation with human grades.
Then, we evaluated methods of combining the
di�erent types of machine scoring to obtain a
better prediction of the human grades.

3.4.1. Human±machine correlation of individual
scores

We evaluated each of the proposed scoring
methods experimentally by computing the corre-
lations between machine and human scores at the
sentence level. The speech material consisted of the
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5089 sentences of the nonnative database which
were graded for pronunciation quality by expert
human raters. The machine scores for each indi-
vidual sentence were correlated with the corre-
sponding human ratings. For the sentences that
had more than one human grade assigned, we
picked randomly one of them.

In all the experiments, when obtaining the ma-
chine scores for each sentence, we removed the
scores of the phones in context with silence be-
cause their alignments could have been inaccurate.
The results was a small but consistent increase in
the correlation for all the machine score types
(Neumeyer et al., 1996).

In Table 2 we see that at the sentence level the
posterior-based score has the highest correlation,
followed by the duration score having a 20% lower
correlation and then the syllabic timing with 39%
lower correlation. Sentence-level correlations are
still lower than those among humans, which mo-
tivates further work to predict pronunciation rat-
ings for only a single utterance.

We would consider attempting to increase hu-
man±machine correlation by using multiple scores.
This approach is practical, however, only if the
machine scores are not highly dependent on each
other. As shown in Table 3, we computed the cor-
relation coe�cient between pairs of machine scores
and we found a moderate level of correlation be-
tween posterior and duration scores and a lower
degree of correlation between syllabic timing and
both posterior and duration scores. Assuming that
the joint probability distribution of the machine
scores does not deviate very much from a multi-

variate Gaussian and given that the correlations
between the scores are not very high, we consider
that there may be some independent information in
the di�erent machine scores, so that the combina-
tion could help to predict pronunciation quality.

3.4.2. Combination of scores
We evaluated the four di�erent types of predic-

tors ± linear regression, neural network, probability
distribution estimation and regression tree ± in
mapping and combining di�erent types of machine
scores to increase the correlation at the sentence
level. As referred in Section 2, the nonnative speech
database was divided into two equally sized sets
with no common speakers. We estimated the pa-
rameters of the di�erent regression and estimation
models in one set and we evaluated the correlation
of the predicted scores and the corresponding actual
human grades in the other set. Then we repeated the
procedure with the sets swapped and we averaged
the correlation coe�cients.

In Table 4 we show the average correlation
coe�cients for the di�erent types of predictors and
score combinations. A linear combination of pos-
terior and duration scores produced a minor in-
crease in correlation over the use of posterior
scores alone. The addition of syllabic timing re-
sulted in a small additional improvement.

The nonlinear combination using a neural net-
work was more e�ective, in the best case increasing
the correlation 11.5% with respect to that of the
single posterior score. Table 4 shows that a big
part of this gain, 8%, is due only to the e�ect of the
nonlinear mapping of the posterior scores to the
human grades that the network is implementing.
The addition of the duration score led to a gain of
10.8% with respect to the baseline. The further
addition of timing scores allowed to reach the best
case, with a correlation of r� 0.642, which is very
close to the sentence-level human-to-human cor-
relation reported in Section 3.1. Assuming inde-
pendent measurements, this improvement was
statistically signi®cant at the level of 0.95.

The distribution estimation method with scalar
quantization produced a good prediction
(r� 0.611) of the human grades when using only
the posterior score, but degraded rapidly when the

Table 2

Sentence-level correlations between human and machine scores

Machine scores Sentence-level correlation

Posterior score 0.579

Normalized duration score 0.469

Syllabic timing score 0.352

Table 3

Sentence-level correlations between pairs of machine scores

Pairs of machine scores Sentence-level correlation

Posterior±duration 0.662

Posterior±syllabic timing 0.434

Duration±syllabic timing 0.466
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number of input features was augmented. To
maintain a robust distribution estimate, we could
make only a small increase in the number of pa-
rameters. Therefore, when adding a second ma-
chine score, we had to reduce the number of
quantization levels. Thus, the quantization error
increased, reducing the correlation.

The estimation method with vector quantiza-
tion of the scores was better than the method with
scalar quantization and gave, in the best case, a
7.3% improvement in correlation over the case
with a single posterior score. This improvement
was also statistically signi®cant at the level of 0.95.
Most of the gain was produced by the nonlinear
mapping of the posterior scores rather that by the
addition of more machine scores.

The tree approach achieved slightly better per-
formance than the estimation method. It showed a
marked increase in prediction performance with
the addition of new input scores. The improve-
ments ranged from 5.7%, with posterior scores
only, to the best-performing case, with posterior,
duration and timing, which reached an 8% in-
crease in correlation with respect to the baseline.

Our experiments showed that adding other ma-
chine scores, such as global likelihood and phone
recognition rate (Neumeyer et al., 1996), to the
posterior score did not lead to an improvement.

Another consideration is that the correlation
results we have shown are very dependent on the

distribution of grades in the particular speech dat-
abase. The VILTS database, for instance, has a
concentration around the intermediate human
grades of 3, 2 and 4 and fewer examples of 5 and 1
(Neumeyer et al., 1996). A more even distribution
across all the grades would tend to have a higher
human±machine correlation because having more
examples of speech with the highest and lowest
human grades exercises the ranges of machine
scores that are more reliable or have less superpo-
sition with those associated to other human grades.
For instance, when we increased the native sen-
tences in the database by 7.5% and assigned the
human grade 5 to those sentences, the baseline
correlation using posterior scores increased to
r� 0.64 and the correlation between the human and
the predicted grades, using a regression tree, rose to
r� 0.71. This represents an increase in correlation
of 10.7%, which is almost twice the increment ob-
tained with the tree in the original database.

4. Discussion and summary

We have presented and experimentally evaluated
several linear and nonlinear methods of predicting
human pronunciation-quality grades based on
machine scores. Nonlinear predictors based on a
combination of machine scores produced better
results than a linear combination of scores. Each of

Table 4

Sentence-level correlations between human and predicted machine grades using di�erent predictors and combinations of machine

scores

Method Machine scores Correlation

Baseline Posterior 0.576

Linear regression Posterior + duration 0.587

Linear regression Posterior + duration + timing 0.593

Neural network Posterior 0.622

Neural network Posterior + duration 0.638

Neural network Posterior + duraton + timing 0.642

Distribution estimation (scalar quantization) Posterior 0.611

Distribution estimation (scalar quantization) Posterior + duration 0.605

Distribution estimation (scalar quantization) Posterior + duration + timing 0.568

Distribution estimation (vector quantization) Posterior (VQ) 0.615

Distribution estimation (vector quantization) Posterior + duration (VQ) 0.617

Distribution estimation (vector quantization) Posterior + duration + timing (VQ) 0.618

Regression tree Posterior 0.609

Regression tree Posterior + duration 0.618

Regression tree Posterior + duration + timing 0.622
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the nonlinear combination methods allowed us to
approximate in di�erent ways the optimal predictor
of the human grades, the conditional expected value
given by Eq. (6). For the speci®c machine scores
used in this work, the nonlinear mapping imple-
mented by the nonlinear predictors was more ef-
fective than a combination of machine scores.

Each method presents di�erent trade-o�s in
terms of implementation di�culty, speed and nec-
essary degree of manual tuning and optimization.
In the case of the neural network predictor we had
to experiment with di�erent network architectures
to ®nd the one with the best performance. This
method had a higher computational cost in training
than other methods and it required manual tuning
of training parameters. In addition, it was not easy
to interpret the processing of the neural network.
The VQ-based estimation of distributions also re-
quired substantial experimentation to de®ne the
quantization levels or codebook size needed for
good performance. The method based on regression
with trees was very e�cient in development time
because the architecture of the tree is generated
automatically, training is not computationally ex-
pensive and humans can easily interpret the pro-
cessing of the tree. In addition, it can deal easily with
missing features, which is not true for the other
methods. On the other hand, both trees and the VQ-
based prediction produce only a set of possible
discrete values as the predicted human grades, while
the neural network method produces a continuous
variable, which may be a desirable feature in some
applications, such as pronunciation quality `me-
ters'. The continuous-variable output combined
with well-known interpolating capabilities may
have contributed to neural network's performance,
which was better than that of the other methods.

In the best case, an overall gain of 11.5% increase
in correlation (from r� 0.576 to r� 0.642) at the
sentence level was obtained in the VILTS database
by using nonlinear regression with a neural network
combining posterior, duration and timing scores.
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